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Reversible reaction-diffusion systems display anomalous dynamics characterized by a power-law relaxation
toward stationarity. In this paper we study in the aging regime the nonequilibrium dynamical properties of
some model systems with reversible reactions. Starting from the exact Langevin equations describing these
models, we derive expressions for two-time correlation and autoresponse functions and obtain a simple aging
behavior for these quantities. The autoresponse function is thereby found to depend on the specific nature of
the chosen perturbation of the system.
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I. INTRODUCTION

The intriguing aging processes observed in nonequilib-
rium systems with slow �i.e., nonexponential� dynamics have
been the focus of many intensive research efforts in the past.
Whereas the initial studies almost exclusively focused on
systems such as glasses �1� and spin glasses �2�, it has been
realized quite recently that aging processes do not uniquely
characterize these complex systems, but that they are also
encountered in much simpler situations �3�. Thus, the study
of aging phenomena has, for example, been extended toward
magnetic systems �4–6�, prepared initially in a disordered
high temperature state and then quenched to or below their
equilibrium critical point, and toward reaction-diffusion sys-
tems quenched to their nonequilibrium critical point �7�.
These investigations of simple systems displaying aging
have led to an increased theoretical understanding of aging
processes taking place far from equilibrium.

Diffusion-limited irreversible reactions are often charac-
terized by the presence of an absorbing phase transition,
separating an active phase from an inactive or absorbing
state from which the system cannot escape �8–10�. These
nonequilibrium phase transitions have attracted much inter-
est, and different universality classes have been identified
�9,11�. Various quantities, as, for example, the density of
particles, display simple power laws when approaching these
nonequilibrium critical points. In addition, the dynamical
correlation length increases as a power law of time, similar
to what is observed at an equilibrium critical point, revealing
the presence of slow dynamics. Consequently, aging pro-
cesses have been studied in irreversible reaction-diffusion
systems quenched to their nonequilibrium critical point
�12–18�. Interestingly, two-time quantities, such as the auto-
correlation function C�t ,s� and the autoresponse function
R�t ,s�, display in these systems the same simple scaling be-
havior as the corresponding quantities in equilibrium critical
systems:

C�t,s� = s−bfC�t/s� , �1�

R�t,s� = s−1−afR�t/s���t − s� , �2�

where a and b are nonequilibrium exponents, whereas the
scaling functions fC and fR only depend on the ratio t /s, with
fC�y��y−�C/z and fR�y��y−�R/z for y�1. Here z is the dy-

namical exponent, and �C and �R are called autocorrelation
and autoresponse exponents. Finally, the step function ��t
−s� in the expression for the autoresponse function ensures
causality. The absence of detailed balance in irreversible
reaction-diffusion systems reveals itself mainly by the fact
that the relation a=b, trivially observed at equilibrium criti-
cal points, is no longer fulfilled �see �7� for a recent review
containing a thorough discussion of this point�.

All these recent studies investigated aging at nonequilib-
rium phase transitions. This is of course due to the fact that
in reaction-diffusion systems with irreversible reactions non-
exponential relaxation is exclusively encountered at absorb-
ing phase transitions.

It is very remarkable that nonexponential relaxation is ge-
nerically found in reversible reactions, and this without fine
tuning of the system parameters �as would be needed in or-
der to be exactly at a phase transition point�. A power-law
behavior in the long time limit was first predicted in �19� for
the bimolecular reversible reaction A+B�C taking place in
solutions, based on physical arguments involving spatial con-
centration fluctuations. This power-law approach to station-
arity in reversible reaction-diffusion systems was later veri-
fied through more elaborated approaches �20–23�, through
numerical simulations �24,25�, and through some exactly
solved models �26–29�. In addition, this power-law behavior
has been observed experimentally in excited-state proton
transfer reactions �30–32�. All these studies demonstrate that
the most important ingredient for aging, namely slow dy-
namics, is typically encountered in reversible reaction-
diffusion systems.

We propose to extend the study of aging phenomena to
these reversible reaction-diffusion models. Starting from ide-
alized reaction-diffusion models, we exploit the fact that a
set of Langevin equations, describing the time evolution of
the system, can be derived exactly for these systems �26�.
Within the standard field theoretical representation of
reaction-diffusion models we derive exact expressions for
the two-time correlation and autoresponse functions in the
aging regime. For all the studied models we recover a simple
aging behavior where the scaling functions of these two-time
quantities only depend on the ratio of the two times. The
most remarkable result obtained in this study concerns the
autoresponse function whose expression is found to depend
on the nature of the perturbation applied to the system.

The paper is organized as follows. In Sec. II, we consider
the reaction A+A�C. Starting from the master equation de-
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scription of the model, we use the exact map to a set of two
Langevin equations for some random complex variables a
and c. The concentrations na�t� and nc�t� of the particles of
types A and C are then given by the average of the random
variables a and c over the complex noise: na= �a� and nc
= �c�. Exploiting the controlled approximation scheme estab-
lished in �26�, we derive exact expressions for two-time cor-
relation and autoresponse functions in the dynamical scaling
or aging regime. In Sec. III, we extend our study to the
reactions A+B�C and A+B�C+D. Using the same ap-
proach as in Sec. II, we find the functional dependence of the
two-time quantities also for these reactions. In Sec. IV we
summarize our findings and discuss open problems. Two ad-
ditional technical points are discussed in the Appendixes.

II. THE A+ArC REACTION SCHEME

A. Model and exact Langevin equations

Following �26�, we consider two types of particles �called
A and C particles� that diffuse on a d-dimensional hypercu-
bic lattice. Allowing multiple occupancy of a lattice site,
particles at the same site may undergo the following reac-

tions: �1� the reaction A+A→
�0

C with rate �0 where two A
particles recombine to form a C particle and �2� the reverse

reaction C→
�

A+A where a C particle dissociates with rate �.
These microscopic rules are readily translated into the fol-
lowing master equation for the probability P��m	 , �n	 ; t�
�where �m	= �¯ ,mi , ¯ 	, respectively, �n	= �¯ ,ni , ¯ 	 are
the occupation numbers of particles A, respectively, C for
every lattice site i� that the configuration �m	 , �n	 is found at
time t:

�

�t
P��m	,�n	;t� = 


i

HiP��m	,�n	;t�

+ 

i



j�i�

Di,jP��m	,�n	;t� . �3�

Here the term HiP��m	 , �n	 ; t� contains the reactions taking
place at lattice site i and is given by

HiP�mi,ni;t� = ���ni + 1�P�mi − 2,ni + 1;t� − niP�mi,ni;t��

+ �0��mi + 2��mi + 1�P�mi + 2,ni − 1;t�

− mi�mi − 1�P�mi,ni;t�� , �4�

where for convenience we wrote as arguments of P only the
occupation numbers mi and ni of lattice site i that are
changed by these reactions. Diffusion processes are captured
by the second term in Eq. �3� where the sum over j�i� is a
sum over the nearest-neighbor sites j of the lattice site i.
Indicating again only the occupation numbers that are
changed in the process, we have the following expression for
Di,jP:

Di,jP =
Da

�d ��mj + 1�P�mi − 1,mj + 1;t� − miP�mi,mj;t��

+
Dc

�d ��nj + 1�P�ni − 1,nj + 1;t� − niP�ni,nj;t�� ,

�5�

where Da and Dc are the diffusion constants of the A and C
particles and � is the lattice constant.

The master equation �3� must be supplemented by initial
conditions. We here consider the case of an uncorrelated
Poisson distribution on each site and for each particle spe-
cies. Prepared in this initial state, the system evolves toward
chemical equilibrium in the long time limit �26�.

As shown by Rey and Cardy �26� the dynamics of this
model allows an exact description in terms of a set of
coupled stochastic Langevin equations. Introducing �=�0�d,
one obtains

��t − Da�
2�a�x,t� = − 2�a2�x,t� + 2�c�x,t� + ��x,t� , �6�

��t − Dc�
2�c�x,t� = �a2�x,t� − �c�x,t� , �7�

where � is a complex Gaussian noise with zero mean value
whose correlation is given by

���x,t���x�,t��� = 2��c�x,t� − �a2�x,t����x − x����t − t�� .

�8�

Here, the vector x describes the d-dimensional space coordi-
nates, whereas the bracket notation stands for the average
over the noise. Inserting Eq. �7� into this expression yields

���x,t���x�,t��� = − 2�t�c�t����x − x����t − t�� �9�

for spatial homogeneous initial conditions.
Note that the variables a�x , t� and c�x , t� do not represent

the particle densities, as they are complex �26�. The mean
densities na�t� and nc�t� of the particles of types A and C,
which are of course real valued, are given by the averages
�a�x , t�� and �c�x , t�� of these complex variables over the
noise.

As the density nc�t�= �c�x , t�� reaches a stationary value in
the limit t→�, the noise correlation, see Eq. �9�, will vanish
in the long time limit. As a consequence of the vanishing of
the fluctuations at equilibrium one can compute the actual
values of the equilibrium densities, which are given by their
mean field values. These equilibrium densities a� and c�

satisfy the relationship

�a�
2 = �c�, �10�

which follows directly from Eq. �8�.
It is important to notice that the dynamics conserves the

quantity na�t�+2nc�t� due to the total mass conservation. In
the case of equal diffusion constants Da=Dc�D, which is
the case we discuss in the following, we have in addition that
	=a+2c obeys the noisy diffusion equation

��t − D�2�	�x,t� = ��x,t� , �11�

as follows directly from Eqs. �6� and �7�. Since ���=0 and
the initial conditions are homogeneous, the average value of
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the field �	�x , t�� is conserved. In particular we have 	0
��	�x ,0��= �	�x , � ���	�. Using Eq. �10� one can there-
fore express the equilibrium densities as a function of 	0
�26�,

a� =
�

4�
�1 +

8�

�
	0 − 1� and c� =

1

2
�	0 − a�� .

�12�

Starting from this Langevin description and exploiting the
existence of the conserved quantity, Rey and Cardy �26� de-
veloped a systematic approximation scheme that enabled
them not only to derive the power-law relaxation toward
equilibrium but also to compute the corresponding amplitude
exactly. In the following we extend this approach to two-time
quantities and derive in leading order exact expressions for
correlation and response functions in the aging regime.

B. Two-time correlation function

New insights into the behavior far from stationarity can
be obtained through the analysis of the connected correlation
function

C�t,x;s,y� = ��c�x,t��c�y,s�� − ��c�x,t����c�y,s�� ,

�13�

with �c�x , t�=c�x , t�− �c�x , � ��=c�x , t�−c�. In the definition
of the correlation we have taken into account that in the
stationary state the mean value of the variable c is c�. In case
x=y, we are dealing with the autocorrelation function
C�t ,s�=C�t ,x ;s ,x�=C�t ,0 ;s ,0�, where in the last identity
we exploited the spatial homogeneity of our system.

In principle, we should define a similar quantity for
the variable a�x , t�. However, as �a�x , t�
=a�x , t�−a�=�	�x , t�−2�c�x , t� with �	�x , t�=	�x , t�−	�,
we can immediately derive the correlator for a once we
know the correlators for the conserved quantity 	 and for the
variable c.

Starting point for the computation of the correlation func-
tion is the following Langevin equation for the quantity
�c�x , t� �26�:

��t − D�2 + 
��c�x,t� = 4��c2�x,t� − 4��	�x,t��c�x,t�

+ ��	2�x,t� +
1

2
�
 − ���	�x,t� ,

�14�

where 
�4�a�+�.
The formal solution of this equation is

�c = G��c − c0���t� + 4��c2 − 4��	�c + ��	2 + �
 − ���	� ,

�15�

with the Green’s function

G�f��x,t� = �
0

t

dt�� ddx�e−
�t−t��G0�x − x�,t − t��f�x�,t�� .

�16�

The nonlinear equation �15� is solved by the systematic
approximation scheme developed in �26�. As a result we ob-
tain to leading order the following expressions for ��c�x , t��
and ��c�x , t��c�y ,s��:

��c�x,t�� =
��2


3 ��	2�x,t�� , �17�

��c�x,t��c�y,s�� = �
 − �

2

�2

��	�x,t��	�y,s�� . �18�

It follows that the calculation of our correlation function re-
duces to the calculation of the expectation values ��	2�x , t��
and ��	�x , t��	�y ,s��. Rey and Cardy already computed the
first quantity and obtained in leading order

��	2�x,t�� = 2�c0 − c���8�Dt�−d/2. �19�

For the computation of ��	�x , t��	�y ,s�� we exploit the fact
that 	�x , t� obeys the noisy diffusion equation �11� with the
noise correlator given by Eq. �9�. This readily yields the
expression

��	�x,t��	�y,s�� = − 2�
0

t

dt1� ddx1G0�x − x1,t − t1�

�G0�y − x1,s − t1��t�c�t1�� , �20�

where G0�x , t� is the free propagator

G0�x,t� = ��t��4�Dt�−d/2 exp�−
x2

4Dt
� , �21�

and ��t� is the step function. Hence

��	�x,t��	�y,s�� = − 2�
0

s

dt1�4�D�t + s − 2t1��−d/2

�exp�−
�x − y�2

4D�t + s − 2t1���t�c�t1�� .

�22�

For x=y we obtain up to some numerical prefactor an inte-
gral that Rey and Cardy already discussed in �26�. In the
aging regime, where both t and s are large, this then leads to
the following leading behavior:

��	�x,t��	�x,s�� = 2�c0 − c���4�D�t + s��−d/2. �23�

We therefore have for the autocorrelation function in the ag-
ing regime the expression

C�t,s� = ��c�x,t��c�x,s�� − ��c�x,t����c�x,s��

= �
 − �

2

�2

��	�x,t��	�y,s�� − ���2


3 �2

��	2�x,t��

���	2�x,s�� =
1

2
�
 − �



�2

�c0 − c���4�D�t + s��−d/2,

�24�

where in the last line we omitted all subleading correction
terms. It is interesting to notice that the term
��c�x , t����c�x ,s�� is of the order s−d/2t−d/2 and therefore only
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contributes to the correction terms. This reflects the fact �al-
ready noticed in �26�� that the quantity c is not a self-
averaging quantity.

The derived expression for the autocorrelation function
can be cast in the form C�t ,s�=s−bfC�t /s� that characterizes a
simple aging behavior. This also yields the following values
for the nonequilibrium exponents �see Eq. �1��:

b = d/2 and �C/z = d/2. �25�

The space-time correlation function C�t ,x ;s ,y� can be
computed in exactly the same way, with the final result

C�t,x;s,y� =
1

2
�
 − �



�2

�c0 − c���4�D�t + s��−d/2

�exp�−
�x − y�2

4D�t − s�� . �26�

C. Two-time response functions

The system can be perturbed in several possible ways in
order to compute the linear response. One of the possibilities
is to inject new particles �which can be particles of either
type A or C� at time s. The “injection” process is assumed to
be random with the same small occurrence probability at
each lattice site. The response of the system to that perturba-
tion is then monitored at a later time t by measuring the
densities of particles of type A or C. In this way we obtain
different responses that we note as Ri

f�t ,s�, where i stands for
the type of particles that are created whereas f indicates the
type of particles whose density is measured. Thus, the re-
sponse RC

A�t ,s�, formally given by the equation

RC
A�t,s� = ���a��t�

�hC�s�
�

hC→0
, �27�

means that we are measuring the linear response of the A
particles density to the additional creation of C particles
only. It is important to notice that this process violates the
conservation of the quantity �	�. In order to assess the impact
of this violation on the response of the system, we also con-
sider a process that conserves the total mass of the particles.
As we discuss in the following, the response of a reversible
diffusion-reaction system strongly depends on the chosen
perturbation.

Let us start by injecting particles of type C into the system
and by monitoring the subsequent change in the particle den-

sity of the same particle type. A creation process �→
hC

C
modifies the single site part of the master equation �3� which
now reads as

Hi
hP�mi,ni;t� = HiP�mi,ni;t� + hC�t��P�mi,ni − 1;t�

− P�mi,ni;t�� , �28�

where HiP�mi ,ni ; t� is the expression �4� one has without
additional creation processes.

We might want to inject C additional C particles at time
s, so that the particle injection probability hC�t� is given by

hC�t� = C��t − s� . �29�

However, as the final state of the evolution will again be a
homogeneous state, the concrete form of hC is not of real
importance as long as the particle injection has ended before
the measurement of the response at time t, with the total
number of injected particles being given by

C = �
0

t

d�hC��� . �30�

With this particle injection process the Langevin equation
for the C particles is now given by

��t − D�2�ch�x,t� = �ah�x,t�2 − �ch�x,t� + h�t� , �31�

where in the continuum limit we set

h�t� =
hC�t�

�d and  =
C

�d , �32�

thereby dropping the index C for the quantities divided by
the volume of the system. We use in the following the index
h in order to emphasize the presence of the additional cre-
ation process and to distinguish the corresponding quantities
from those obtained in the absence of this process. The
Langevin equation for the A particles is unchanged by the
creation of C particles, but the noise-noise correlator �9� be-
comes

���x,t���x�,t��� = 2�h�t� − �t�ch�t�����x − x����t − t�� ,

�33�

for spatial homogeneous initial conditions, due to the Eqs.
�8� and �31�.

With this one readily verifies the validity of the following
set of algebraic equations:

a�
h + 2c�

h = a0 + 2c0 + 2 = 	0 + 2 , �34�

��a�
h �2 = �c�

h . �35�

Note that as  has the meaning of the average total change
in the number of C particles due to the creation process, Eq.
�34� reflects the modification of the total mass due to this
process. Equations �34� and �35� immediately yield the fol-
lowing expressions for the mean values a�

h and c�
h in the new

stationary state:

a�
h =

�

4�
�1 +

8�

�
�	0 + 2� − 1�

and

c�
h =

1

2
�	0 + 2 − a�� , �36�

which differ from the expressions �12� without the field h
through the replacement of 	0 by 	0+2.

As the coefficients a�
h and c�

h are again constants, it fol-
lows that also in this case the perturbation series derived by
Rey and Cardy �26� and sketched in the previous section
only involves time independent coefficients. Therefore, any
quantity which is a function of the coefficients a�

h and c�
h can
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be derived in exactly the same manner as discussed before.
For instance, the constant 
 becomes


h = 4�a�
h + � . �37�

Hence, in order to calculate the h-dependent density �ch�
�c�

h + ��ch� we just need to substitute into Eq. �17� the ex-
pression �37� and the h-dependent expression for ��	h�. This
last quantity is obtained by noticing that due to the presence
of the additional injection process the Langevin equation for
	 now reads

� �

�t
+ �2�	h�x,t� = ��x,t� + 2h�t� . �38�

This yields for ���	h�2� the expression

���	h�2� = 2�c0 − c�
h ��8�Dt�−d/2 + 2�

0

t

d��8�D�t − ���−d/2h���

�39�

in leading order.
The last remaining step is to calculate the two-time linear

response function

RC
C�t,s� = ���ch�t��

�h�s�
�

h→0
, �40�

which after some elementary algebra is given by the expres-
sion

RC
C�t,s� = 2

��2


3 ��



− 1 −

24��


2 �c0 − c����8�Dt�−d/2��t − s�

+ 2
��2


3 �8�D�t − s��−d/2��t − s� , �41�

where we used the fact that �
�h�s� =��t−s�. This expression

can also be cast in the standard scaling form RC
C�t ,s�

=s−1−afR�t /s���t−s�, with a=d /2−1 and �R /z=d /2. Inter-
estingly, we have a�b, even though the system evolves to-
ward chemical equilibrium. We also note that �R=�C.

The change in the density of particles A due to the injec-
tion of C particles, RC

A, is related to the response RC
C by

RC
A�t,s� = 2��t − s� − 2RC

C�t,s� , �42�

which follows directly from �ah�+2�ch�= �	h�=	0+2. Thus
the expression �42� is the sum of two terms with different
scaling behaviors where the constant term is the leading one.

Let us now discuss the response of the system to an in-
jection of particles of type A. One possible way of doing this
consists in injecting pairs of A particles into the system with

a rate h2A: �→
h2A

2A. As these pairs can immediately react to
form a C particle, it is expected that this leads to the same
behavior as observed when injecting C particles into the sys-
tem. Indeed, the creation of pairs of A particles on the one
hand changes the noise-noise correlator which now reads
�with h=h2A / ld�

���x,t���x�,t��� = �h�t� − 2�t�ch�t�����x − x����t − t�� ,

�43�

and on the other hand modifies the Langevin equation for the
A particles:

��t − Da�
2�a�x,t� = − 2�a2�x,t� + 2�c�x,t� + ��x,t� + 2h�t� .

�44�

Using in addition that the Langevin equation for the C par-
ticles remains unchanged, it is then straightforward to show
that we have R2A

C =RC
C and R2A

A =RC
A.

The situation changes if instead of injecting pairs of A
particles only single A particles are created with rate hA. In
that case the additional A particles do not automatically lead
to the formation of additional C particles, but instead a newly
created A particle must first diffuse through the system in
order to encounter another additional A particle. Formally,
the creation of single A particles again shows up in the
Langevin equation �6� for the A particles as an additional
field term h�t�, but the noise-noise correlator and, subse-
quently, the �	 correlator are the same as for the h=0 case,

���x,t���x�,t��� = − 2�t�ch�t����x − x����t − t�� , �45�

���	h�2� = 2�c0 − c�
h ��8�Dt�−d/2. �46�

This then readily yields the expression

RA
C�t,s� =

��2


3 ��



− 1 −

24��


2 �c0 − c����8�Dt�−d/2��t − s� ,

�47�

for the response of the C particles to the creation of single A
particles. It is important to note that the expression �47� does
not depend �at least in leading order� on the excitation time s.
This is a direct consequence of the fact that the rate of en-
counter of two newly created A particles does not depend on
the time s at which the particles have been created.

All the perturbations considered so far have in common
that the quantity �	�=na+2nc, that would be constant with-
out the perturbation, has a different value in the stationary
state than in the initial state. In order to assess the impor-
tance of this conserved quantity, we also looked at the re-
sponse to a perturbation that keeps �	� unchanged. This can
be achieved by the simultaneous creation of particles of one
type and destruction of particles of the other type. For ex-
ample, we can create pairs of A particles with rate h	 and at
the same time remove C particles with rate h	. In principle,
the removal procedure is an ill-defined process, since one
may end up with a negative number of particles on a given
site. However, for large equilibrium concentrations a� and
c�, we expect the number of particles on each site of the
lattice to remain larger than zero following an infinitesimal
excitation of the type just described.

It is important to note that the Langevin equation �11� for
	 is unaffected by this perturbation, even so additional field
terms are entering into the Langevin equations for a and c.
Doing the calculations along the lines just sketched for the
other perturbations, one remarks that, due to the fact that the
asymptotic values c�

h and a�
h are independent of the field h
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=h	 / ld, the response functions become time translational in-
variant. Thus for the response of the C particles to this per-
turbation we obtain

R	
C�t,s� = 2

��2


3 �8�D�t − s��−d/2��t − s� , �48�

whereas for the response of the A particles we obtain

R	
A�t,s� = − 2R	

C�t,s� = − 4
��2


3 �8�D�t − s��−d/2��t − s� ,

�49�

as =0.
It has been proposed �33,34� that in aging systems space-

time symmetries can be exploited in order to derive exact
expressions for two-time quantities �see �6,7� for recent re-
views of this approach in the context of magnetic and of
reaction-diffusion systems, respectively�. Thus for the auto-
response function, this theoretical approach, called the theory
of local scale invariance, yields the following general expres-
sion:

R�t,s� = r0s−a−1� t

s
�1+a�−�R/z� t

s
− 1�−1−a�

��t − s� , �50�

where the values of the exponents a, a�, and �R are not fixed
by the theory, whereas r0 is a nonuniversal numerical pref-
actor and z is the dynamical exponent. In the reversible
reaction-diffusion system considered here, we have the inter-
esting situation that we can design different perturbations of
the system and monitor the reaction of the system to these
perturbations. Comparing the theoretical expression �50�
with our exact results, we observe that the responses �48� and
�49� to a perturbation that does not change the conserved
quantity �	� can indeed be cast in the form �50�, with a
=a�=d /2−1 and �R /z=d /2. On the other hand, however,
some perturbations that change the value of the conserved
quantity cannot be cast in the form �50�, indicating that one
must be careful when applying space-time symmetries to
perturbations that change quantities that are otherwise con-
served by the dynamics of the system.

III. OTHER REVERSIBLE REACTION SCHEMES

A. The A+BrC reaction scheme

The treatment of the bimolecular reaction scheme A
+B�C closely follows that of the scheme A+A�C dis-
cussed in the previous section. The main difference is the
presence of two “conservation” laws for the average densi-
ties �26�,

a� + b� + 2c� = a0 + b0 + 2c0 and a� − b� = a0 − b0,

�51�

where a0, b0, c0, respectively, a�, b�, c�, are the concentra-
tions of the A, B, C particles in the initial, respectively, final,
state. Writing down the exact Langevin equations, one no-
tices that the Langevin equation for c�x , t� is still noise inde-
pendent. Exploiting this property, we find for the two-point
correlation function the expression

C�t,s� =
1

2
�
 − �



�2

�c0 − c��„4�D�t + s�…−d/2, �52�

which is of the same form as for the A+A�C reaction
scheme, see Eq. �24�. The only difference is that the constant

 is now given by 
=��a0+b0+2c0−2c��+�. We also no-
tice that the expressions for the different response functions
are unchanged, provided that the new expression for 
 is
used.

B. The A+BrC+D reaction scheme

More interesting is the reversible reaction A+B�C+D,
not discussed in �26�, as here the Langevin equation for each
reactant does depend on noise. It is worth mentioning that
the A+B�C+D reaction scheme is readily found in experi-
mental situations, one well-known example being ethanoic
acid dissolved in water that forms ethanoate and hydronium
ions: CH3CO2H+H2O�CH3CO2

−+H3O+. In order to make
the following discussion more compact, we use the symbols
A1 and A2 instead of A and B, and C1 and C2 instead of C and
D.

The exact Langevin equations for this four species revers-
ible reaction read

� �

�t
− D�2�ai = f�ai,ci� + �ai

, �53�

� �

�t
− D�2�ci = − f�ai,ci� + �ci

, �54�

where i=1,2 and f�a ,c����c1c2−�a1a2�. Here the complex
variables are again related to the average particle densities,
e.g., na1

= �a1� is the mean density of the particles of type A1.
The only nonvanishing noise-noise correlators are

��a1
�r��a2

�r��� = 2��r − r���f�a,c�� , �55�

��c1
�r��c2

�r��� = − 2��r − r���f�a,c�� . �56�

There exist three “conserved” quantities, namely �t
�
i=1

2 �ai+ci�, �a�a1−a2, and �c�c1−c2, which obey the
noisy diffusion equations

� �

�t
− D�2�� j = �̃ j , �57�

with j= t ,a ,b. The noise terms �̃ j are thereby just linear com-

binations of the �ai
,�ci

: �̃t�
i=1
2 ��ai

+�ci
�, �̃a��a1

−�a2
, and

�̃c��c1
−�c2

.
Let us now calculate the average density of, say, A1 par-

ticles, �a1�. Since the solution of the steady state is given by
the condition f�ai

� ,ci
��=0, where ai

� and ci
� are the average

particle densities in the steady state, we can find all four
coefficients ai

� and ci
� �i=1,2� by exploiting the conserva-

tion laws ��t�=const��t, ��a�=const��a, and ��c�
=const��c,

a1
� =

��t + �a�2 − �c
2

4�t
, a2

� =
��t + �c�2 − �a

2

4�t
,
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c1
� =

��t − �c�2 − �a
2

4�t
, c2

� =
��t − �a�2 − �c

2

4�t
. �58�

We will in the following discuss to some extent the case
�=� which has the virtue that the algebra is quite easy.
Moreover, by choosing an appropriate time rescale we can
always set �=1. The general situation ��� can be treated
along the same lines, but the algebra is rather involved. As
we find for the general case at late times the same functional
dependence of the particle density as for the case �=�, we
refrain from giving the details of this calculation and only
quote the result at the end of this section.

Substituting ai=ai
�+�ai, ci=ci

�+�ci, and � j =� j +�� j
�where i=1,2 and j= t ,a ,c� into Eq. �53� yields, after some
algebra,

� �

�t
− D�2��a1 = �t�a1 −

�t
2 + �c

2 − �a
2

4�t
��t −

�t − �a

2
��a

+
�c

2
��c + �a1

−
1

4
��t

2 + �a
2 − �c

2�

−
1

2
��t��a + ��t�a1. �59�

Note that the above equation is linear in terms of the function
�a1. This is a consequence of our choice �=�, and is not
true in the general case.

By introducing a new Green’s function

G � e−�ttG0�x,t� , �60�

we can set up a perturbation series along the same lines as
discussed previously for the other reaction schemes. We then
obtain

��a1� = − G�1

4
���a

2 − ��c
2� + ���t

2� −
1

2
���t��a��

+ G���tG�−
�t

2 + �c
2 − �a

2

4�t
��t −

�t − �a

2
��a

+
�c

2
��c + �a1

��� + ¯ �61�

where the dots refer to higher order terms that are omitted
from now on. Luckily, only few of the many terms in this
equation are different from zero. Indeed, since
���a�r���a�r���=−���a�r���a�r��� and ���a�r���c�r���=0,
we obtain ���t�r���t�r���=0 and ���t�r��� j�r���=0, where
j=a ,c. This follows directly from Eqs. �55� and �56�. It is
also clear that the noise term contribution �a1

in Eq. �61� is
exponentially suppressed and hence can be discarded. With
this we end up with the following expression:

��a1� = − G�1

4
���a

2 − ��c
2��

=
2

�t
�

0

t

dt1� ddx1G0
2�x − x1,t − t1��f�ai,ci��t1�� ,

�62�

from which we obtain that the approach to the equilibrium
density of A1 particles is again governed by a power law,
namely

��a1� =
2

�t
�a1��� − a1�0���8�Dt�−d/2. �63�

Following the same step as in Sec. II, we obtain for the
autocorrelation function the expression

C�t,s� =
��t − �a�2 − �c

2

4�t
2 ���a�t���a�s��

=
��t − �a�2 − �c

2

2�t
2 �a1��� − a1�0���4�D�t + s��−d/2

�64�

with the same dependence on s and t as for the A+A�C
reaction scheme. Response functions are also calculated as
previously, yielding again the same functional dependences.
For example, for the response of the A1 particles to a pertur-
bation that conserves �t we obtain

R�t

A1�t,s� =
2

�t
�a1��� − a1�0���8�D�t − s��−d/2��t − s� .

�65�

Let us finish this section by very briefly discussing the
general case ���. In principle, one follows exactly the
same steps as before, but the algebra is much more involved.
Keeping only relevant terms we obtain instead of Eq. �59�
the expression

� �

�t
− D�2��a1 = 
�a1 −


 − ��a

2
��a +

��c

2
��c

−
�

4
���a

2 − ��c
2� − �� − ���a1��a

+ �� − ���a1
2, �66�

with 
=���t
2+ ��−�����a

2−��c
2�. This then yields the

following asymptotic approach toward the equilibrium den-
sity of the A1 particles:

��a1� = g��,�,�a,�c��a1��� − a1�0���8�Dt�−d/2, �67�

where we defined

g��,�,�a,�c� =
� − 3�

4

+

� − �

4
3 ��3
 − ��a�2 − ���c�2� .

�68�

It is again to be noted that this leads to exactly the same
functional forms for the autocorrelation and autoresponse
functions.
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IV. CONCLUSION

In this work we extended the study of aging phenomena
in reaction-diffusion systems toward reversible reaction
schemes. Our starting point thereby was the observation �19�
that in reversible reaction-diffusion systems slow dynamics,
i.e., dynamics characterized by power-law relaxation, is ge-
neric. This is in stark contrast to the case of irreversible
reactions as here the approach to stationarity usually happens
exponentially fast, with the exception of nonequilibrium
critical points which are governed by power laws.

In our study we focused on simple models with reversible
reactions whose behavior in the asymptotic or scaling regime
can be computed exactly �26�. We observed for all studied
models a simple scaling behavior of two-time response and
correlation functions. Interestingly, and in agreement with
irreversible reaction-diffusion systems at their critical point,
the two scaling exponents a and b, see Eqs. �2� and �1�, were
found to be different. The multispecies models we studied
have the virtue that we can define different responses, de-
pending on the particle type for which an additional creation
process is considered and on the particle type whose density
we are monitoring after the perturbation of the system. We
also studied a response where the perturbation conserves the
total number of particles in the system. For this perturbation
we found that the exact result agrees with the expression one
obtains from the theory of local-scale invariance �6,33� that
exploits the existence of space-time symmetries in aging sys-
tems. However, if the system is perturbed in such a way that
the total number of particles, a quantity that is constant in the
unperturbed system, is not conserved, than the response can
not always be cast in the theoretically predicted form �50�.
This result indicates that some care has to be taken if one
wants to apply space-time symmetries to cases where re-
sponse functions result from perturbations that change some
otherwise conserved quantities.

It is very appealing that the theoretically predicted power-
law approach to stationarity is readily observed in experi-
mental systems �30–32�. It should therefore be possible to
measure in these systems two-time quantities in the scaling
regime in order to verify the scenario of simple aging that
follows from our study.

The models we consider in this work are to some extend
artificial, as we allow multiple occupancy of a given site and
only consider on-site reactions. It is an important question
whether the scaling picture emerging from the study of these
simple models also holds in more realistic cases. Of special
interest in this context is the restriction to single-site reac-
tions, as this disagrees with the actual experiments where
longer-range reactions prevail. Indeed, it has been stressed in
the literature �26� that the models studied in this paper yield
as a stationary state a chemical equilibrium state. Voituriez et
al. �35�, however, pointed out that distance-dependent re-
versible reaction rates no longer yield asymptotically a
chemical equilibrium state, but that the stationary state is
then a nonequilibrium state. This raises the interesting pros-
pect that one could be able to study the similarities and dif-
ferences in the aging behavior of systems relaxing toward
equilibrium and nonequilibrium stationary states by chang-
ing the range of the reactions. We plan to study this impor-
tant aspect in our future work.

APPENDIX A: RELATION BETWEEN THE ASYMPTOTIC
PARTICLE CONCENTRATIONS

In the discussion of the aging processes for the A
+A�C reaction we extensively used the relation �10� be-
tween the equilibrium densities of the A and C particles. In
this appendix we briefly show that in zero dimension this
condition may not be realized by all initial conditions.

Starting from the probability P�m ,n , t� for having at time
t m, respectively, n particles of type A, respectively, C at
some lattice point, we can introduce the generating function
�see, for example, �11,36��

��ã, c̃,t� � 

m,n

ãmc̃nP�m,n,t� . �A1�

It then follows from the Master equation �4� that this gener-
ating function is solution of the partial differential equation

�

�t
� = �ã2 − c̃���

�

� c̃
− �

�2

� ã2�� . �A2�

It is more convenient to work with the shifted variables ā
� ã−1 and c̄� c̃−1 which yields for the equation for the
generating function the expression

�

�t
� = �ā2 + 2ā − c̄���

�

� c̄
− �

�2

� ā2�� . �A3�

The stationary solutions of this equation are given by

�0�ā, c̄� = �
−�

�

dz̄G0�c̄, ā − z̄�f�z̄� , �A4�

where G0 is just the Green’s function for the one-
dimensional diffusion equation,

G0�x,y� � �4�
�

�
x�−1/2

exp�−
y2

2
�

�
x� , �A5�

and f�z̄� is any function satisfying the condition f�0�=1 with
only positive coefficients in the Taylor expansion. It directly
follows that there exist infinitely many solutions of Eq. �A3�,
such as

�0�ā, c̄� = 1 +
�

�
c̄ + Aā +

1

2
ā2 �A6�

�with an arbitrary constant A�, or

�p�ā, c̄� = exp� �

�
c̄ + ā� , �A7�

which corresponds to the Poisson stationary distribution. It is
now easy to see that the condition �c�=�a�

2 is indeed real-
ized for the Poisson distribution �A7�, but not for the distri-
bution �A6�.

APPENDIX B: PERTURBATION SERIES

In their article �26� Rey and Cardy stress that one of the
central points of their analysis is the fact that the equation for
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the variable c comes without explicit noise, thus implying
that their approach only works in cases where one of the
equations of motion does not have an explicit noise depen-
dence. In fact, this requirement is not really needed, as we
demonstrate in this Appendix by deriving the average num-
ber of A particles directly from the “noisy” equation �6�.

Indeed, starting from this equation we have

��t − Da�
2 +

1

2

��a =

1

2
��	 + � − ��a2. �B1�

The formal solution of the nonlinear equation �B1� is given
by

�a = G�1

2
��	 + �� − �G��a2� , �B2�

where the Green’s function G is the inverse of the operator
�t−Da�

2+ 1
2
. With this one can derive a perturbation series

for, say, the average density ��a� following the same strategy

as in �26�. One thereby exploits the fact that the noise term
contribution G��� in this series is exponentially suppressed
and hence can be discarded. To convince oneself that it is
indeed so, one should consider terms such as �G���2� and
�G��	�G����, which are exponentially small for late times t.
Taking this into account, one obtains

��a� = − ��1

2

�−3�1

2
��2

��	2� = −
2��2


3 ��	2� , �B3�

which, of course, corresponds to the result

��a� = − 2��c� �B4�

obtained in �26� as the condition ��	�=0 holds.
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